Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome.
نویسندگان
چکیده
We report heterozygous, loss-of-function SOX2 mutations in three unrelated individuals with Anophthalmia-Esophageal-Genital (AEG) syndrome. One previously reported case [Rogers, R.C. (1988) Unknown cases. Proceedings of the Greenwood Genetic Center. 7, 57.] has a 2.7 Mb deletion encompassing SOX2 and associated with a cryptic translocation t(3;7)(q28;p21.3). The deletion and translocation breakpoints on chromosome 3q are >8.6 Mb apart and both chromosome rearrangements have occurred de novo. Another published case [Petrackova et al. (2004) Association of oesophageal atresia, anophthalmia and renal duplex. Eur. J. Pediatr., 163, 333-334.] has a de novo nonsense mutation, Q55X. A previously unreported case with severe bilateral microphthalmia and oesophageal atresia has a de novo missense mutation, R74P, that alters a highly evolutionarily conserved residue within the high mobility group domain, which is critical for DNA-binding of SOX2. In a yeast one-hybrid assay, this mutation abolishes Sox2-induced activation of the chick delta-crystallin DC5 enhancer. Four other reported AEG syndrome cases were extensively screened and do not have detectable SOX2 mutations. Two of these cases have unilateral eye malformations. SOX2 mutations are known to cause severe bilateral eye malformations but this is the first report implicating loss of function mutations in this transcription factor in oesophageal malformations. SOX2 is expressed in the developing foregut in mouse and zebrafish embryos and an apparently normal pattern of expression is maintained in Shh-/- mouse embryos, suggesting either that Sox2 acts upstream of Shh or functions in a different pathway. Three-dimensional reconstructions of the major morphological events in the developing foregut and eye from Carnegie Stages 12 and 13 human embryos are presented and compared with the data from model organisms. SOX2, with NMYC and CHD7, is now the third transcriptional regulator known to be critical for normal oesophageal development in humans.
منابع مشابه
Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans.
The transcription factor SOX2 is expressed most notably in the developing CNS and placodes, where it plays critical roles in embryogenesis. Heterozygous de novo mutations in SOX2 have previously been associated with bilateral anophthalmia/microphthalmia, developmental delay, short stature, and male genital tract abnormalities. Here we investigated the role of Sox2 in murine pituitary developmen...
متن کاملOesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology.
Oesophageal atresia and/or tracheo-oesophageal fistula are relatively common malformations occurring in approximately 1 in 3500 births. In around half of the cases (syndromic oesophageal atresia), there are associated anomalies, with cardiac malformations being the most common. In the remainder (non-syndromic cases), oesophageal atresia/tracheo-oesophageal fistula occur in isolation. Data from ...
متن کاملOesophageal atresia, tracheo-oesophageal fistula and the VACTERL association: review of genetics and epidemiology. Charles Shaw-Smith Department of Medical Genetics, Addenbrooke’s Hospital, Cambridge CB2 2QQ, Address for correspondence:
Oesophageal atresia and/or tracheo-oesophageal fistula are common malformations occurring in approximately 1 in 3500 births. In around half of cases (syndromic oesophageal atresia), there are other associated anomalies, with cardiac malformations being the most common. These may occur as part of the VACTERL association (OMIM 192350). In the remainder of cases, oesophageal atresia/tracheo-oesoph...
متن کاملExamination of SOX2 in variable ocular conditions identifies a recurrent deletion in microphthalmia and lack of mutations in other phenotypes
PURPOSE The role of SRY-Box 2 (SOX2) in anophthalmia/microphthalmia (A/M) is well known, with 10%-20% of A/M explained by mutations in SOX2. SOX2 plays roles in the development of both the posterior and anterior segment structures of the eye and relies on interactions with tissue-specific partner proteins to execute its function, raising the possibility that SOX2 mutations may result in varying...
متن کاملParent-of-origin effects in SOX2 anophthalmia syndrome
PURPOSE Sex determining region Y (SRY)-box 2 (SOX2) anophthalmia syndrome is an autosomal dominant disorder manifesting as severe developmental eye malformations associated with brain, esophageal, genital, and kidney abnormalities. The syndrome is usually caused by de novo mutations or deletions in the transcription factor SOX2. To investigate any potential parental susceptibility factors, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2006